Accurate Task-Space Tracking for Humanoids with Modeling Errors Using Iterative Learning Control

نویسندگان

  • Pranav A. Bhounsule
  • Katsu Yamane
چکیده

Precise task-space tracking with manipulator-type systems requires an accurate kinematic model. In contrast to traditional manipulators, sometimes it is difficult to obtain an accurate kinematic model of humanoid robots due to complex structure and link flexibility. Also, prolonged use of the robot will lead to some parts wearing out or being replaced with a slightly different alignment, thus throwing off the initial calibration. Therefore, there is a need to develop a control algorithm that can compensate for the modeling errors and quickly retune itself, if needed, taking into account the controller bandwidth limitations and high dimensionality of the system. In this paper, we develop an iterative learning control algorithm that can work with existing inverse kinematics solvers to refine the joint-level control commands to enable precise tracking in the task space. We demonstrate the efficacy of the algorithm on a theme-park type humanoid doing a drawing task, serving drink in a glass, and serving a drink placed on a tray without spilling. The iterative learning control algorithm is able to reduce the tracking error by at least two orders of magnitude in less than 20 trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Robust Control of Electrically Driven Robots in the Task Space

In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....

متن کامل

Robust Control of Electrically Driven Robots in the Task Space

In this paper, a task-space controller for electrically driven robot manipulators is developed using a robust control algorithm. The controller is designed using voltage control strategy. Based on the nominal model of the robotic arm, the desired signals for motor currents are calculated and then the voltage control law is proposed based on the current errors and motor nominal electrical model....

متن کامل

A Learning Approach of Wafer Temperature Control in a Rapid Thermal Processing System

This paper presents a learning approach for wafer temperature control in a rapid thermal processing system (RTP). RTP is very important for semiconductor processing system and requires an accurate trajectory following. Numerous studies have addressed this problem and most research on this problem requires exact knowledge of the system dynamics. The various approaches do not guarantee the desire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Humanoid Robotics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017